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Breakthrough tests showed that pure Al,O;, MgO, Ca0, indicating that Hg® adsorption on carbon black is unlikely to happen. H9CI2 J

uptake at 140 °C in a fixed bed system using the
simulated flue gas composition given in Table 1.
Table 1. Simulated Flue gas composition
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Hg in simulated flue gas. Fe,O; and carbon black (Figure 5)
showed significant oxidation and uptake of mercury.

Results are calculated with the assumption that 40% of the carbon
surface are zigzag carbon sites. Model results can fit experimental
results when the system approaches equilibrium. This model shows no
oxidation and adsorption at the very beginning, after which mercury
oxidation happens immediately. This does not agree with experimental
results. Therefore, surface reactions are likely to be kinetically
controlled.
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